Functions of a Complex Variable

Class: III B.Sc Maths

Subject : Complex Analysis

Subject Code: 22SCCMM13

Ms. V. ANBUVALLI
Assistant Professor
Department of Mathematics
Shrimati Indira Gandhi College
Trichy.

Introduction to Complex Functions

Let z and w be complex variables, A complex valued function of a complex variable is denoted by w=f(z).

Examples:

- The function w=iz+3 is defined in the entire complex plane.
- The function $w = \frac{1}{z^2 + 1}$ is defined at all points of the complex plane except at $z = \pm i$.
- w = |z| is defined in the entire complex plane and this is a real-valued function of a complex variable.

Example: Polynomial and Rational Functions

- If $a_0, a_1, a_2, \dots a_n$ are complex constants, the function $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$ is defined in the entire complex plane and is called a polynomial in z.
- If P(z) and Q(z) are polynomials of the portions $\frac{P(z)}{Q(z)}$ is called a rational function and it is defined for all z with $Q(z) \neq 0$.

General Form of Complex Functions.

If u(x,y) and v(x,y) are real-valued functions of two variables defined in a region of the complex plane, then f(z)=u(x,y)+iv(x,y) is a complex-valued function defined on that region.

Conversely,

Every complex function w=f(z) can be put in the form w=f(z)=u(x,y)+iv(x,y), where u and v are real-valued functions of the real variables x and y.

Example:

$$f(z) = z^{2}$$
Put $z = x + iy$

$$f(z) = z^{2}$$

$$= (x + iy)^{2}$$

$$= x^{2} - y^{2} + 2ixy$$

$$f(z) = x^{2} - y^{2} + i2xy$$

Here, $u(x, y) = x^2 - y^2$ and v(x, y) = 2xy.

Thus a complex function w=f(z) can be viewed as a function of the complex variable z or as a function of two real variables x and y.

LIMITS

DEFINITION:

A function w = f(z) is said to have the limit l as z tends to z_0 , if given $\xi > 0$ there exist a $\delta > 0$, such that $0 < |z - z_0| < \delta$ which implies $|f(z) - l| < \xi$.

That is $\lim_{z \to z_0} f(z) = l$.

LEMMA

When the limit of a function f(z) exists as z tends z_0 , then the limit has a unique value.

PROOF:

Suppose that $\lim_{z\to z_0} f(z)$ has two values l_1 and l_2 , then given $\xi>0$ there exists $\delta_1>0$ and

$$\delta_2 > 0$$
 such that $0 < |z - z_0| < \delta_1 \Rightarrow |f(z) - l_1| < \frac{\xi}{2}$ -----(1)

$$0 < |z - z_0| < \delta_2 \Longrightarrow |f(z) - l_2| < \frac{\xi}{2} \quad ---- (2)$$

Now, Let $\delta = \min\{\delta_1, \delta_2\}$

Then , if $0 < |z - z_0| < \delta$

We have

$$|l_{1} - l_{2}| = |l_{1} + f(z) - f(z) - l_{2}|$$

$$= |f(z) - l_{1} + f(z) - l_{2}|$$

$$\leq |f(z) - l_{1}| + |f(z) - l_{2}| \text{ (using Triangle inequality)}$$

$$< \frac{\xi}{2} + \frac{\xi}{2} = \frac{2\xi}{2}$$

$$< \xi$$

$$|l_{1} - l_{2}| \leq \xi$$

Since ξ is arbitrary,

$$\left| l_1 - l_2 \right| = 0$$

$$\therefore l_1 = l_2$$

Example:1

Prove That
$$\lim_{z \to 2} \frac{z^2 - 4}{z - 2} = 4.$$

Solution:

Let
$$f(z) = \frac{z^2 - 4}{z - 2}$$
, hence $f(z)$ is not defined at $z = 2$ and when $z \neq 2$. We have,

$$f(z) = \frac{(z+2)(z-2)}{z-2}$$

= z + 2

.

$$|f(z)-4|=|z+2-4|$$

= $|z-2|$, when $z \neq 2$

Now given $\xi > 0$, we choose $\delta = \xi$ then $0 < |z - 2| < \delta$

$$\Rightarrow |f(z)-4| < \xi$$

$$\therefore \lim_{z\to 2} f(z) = 4.$$

Example:2

Prove that the function $f(z) = \frac{\overline{z}}{z}$ does not have a limit as $z \to 0$.

PROOF:

Given
$$f(z) = \frac{\overline{z}}{z}$$

$$f(z) = \frac{x - iy}{x + iy}$$

 $z\rightarrow 0$ along the path y=mx

Suppose

Along this path

$$f(z) = \frac{x - imx}{x + imx}$$

$$f(z) = \frac{x(1-im)}{x(1+im)} \qquad x \neq 0$$

$$f(z) = \frac{1 - im}{1 + im}$$

Remark: 1

Let f and g be the functions whose limits at z_0 exist. Let $\lim_{z \to z_0} f(z) = l$. and $\lim_{z \to z_0} f(z) = m$. Then

i)
$$lt_{z\to z_0}(f(z)+g(z))=l+m$$

ii)
$$\lim_{z \to z_0} f(z)g(z) = lm$$

iii)
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{l}{m} \qquad , \quad m \neq 0$$

Remark:2

i) If
$$\lim_{z \to z_0} f(z) = l$$
 then $\lim_{z \to z_0} \frac{lt}{f(z)} = \bar{l}$

ii) If
$$\lim_{z \to z_0} f(z) = l$$
 then $\lim_{z \to z_0} |f(z)| = |l|$

iii) If
$$\lim_{z \to z_0} f(z) = l$$
 iff $\lim_{z \to z_0} \operatorname{Re} f(z) = \operatorname{Re} l$ and $\lim_{z \to z_0} \operatorname{Im} f(z) = \operatorname{Im} l$

Continuous Function:

Let f be a complex valued function defined on a region D then f is said to be continuous at z_{0} ,

If $\lim_{z \to z_0} f(z) = f(z_0)$. Thus, f is continuous at z_0 , if given $\xi > 0$, there exist a $\delta > 0$ such that

$$. 0 < |z - z_0| < \delta \implies |f(z) - f(z_{0})| < \xi.$$

f is said to be continuous in D, if it is continuous at each point of D.

Fundistagen.com